
Synthesis of Application Specific Instructions for
Embedded DSP Software

Hoon Choi, Student Member, IEEE, Jong-Sun Kim, Chi-Won Yoon, Student Member, IEEE,

In-Cheol Park, Member, IEEE, Seung Ho Hwang, Member, IEEE, and

Chong-Min Kyung, Member, IEEE

AbstractÐApplication specific instructions play an important role in reducing the required code size and increasing performance in

embedded DSP systems. This paper describes a new approach to generate application specific instructions for DSP applications. The

proposed approach is based on a modified subset-sum problem and supports multicycle complex instructions, as well as single-cycle

instructions, while the previous state-of-the-art approaches generate only the single-cycle instructions or just select instructions from

the fixed super-set of possible instructions. In addition, the proposed approach can also be applied to the case that instructions are

predefined. Experimental results on real applications show that various given constraints can be met by the generated set of

application specific instructions without attaching special hardware accelerators.

Index TermsÐApplication specific instruction-set processor, instruction synthesis, hardware/software co-design, digital signal

processing, embedded system.

æ

1 INTRODUCTION

DUE to the advance of VLSI technology, a lot of ASICs
(Application Specific Integrated Circuits) are being

used in numerous systems. Compared to general purpose
processors, an ASIC can satisfy various constraints, such as
performance, area, and power, by finding the optimal
architecture for an application. However, as the complexity
of applications increases, more flexibility is required to
accommodate design errors and specification changes
which may happen at later design stages. Since an ASIC
is specially designed for one behavior, it is difficult to
accommodate any changes at a later design stage. In
contrast, programmable processors can be easily adapted
to different applications by changing only the programs. It
is the reason that ASIPs (Application Specific Instruction set
Processors) are widely accepted in numerous systems.

Generally, an ASIP has a programmable architecture
tuned to an application area. Choosing an optimal instruc-
tion set for the specific application under the constraints,
such as chip area and power consumption, is crucial in
enhancing the performance of the ASIP. This leads to
several works to develop the tools for analyzing the given
application and determine the optimal instruction set which
maximizes the performance.

There have been many works related to the ASIP
synthesis [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], which can be categorized into four classes. First, the
design of area-efficient hardware blocks of an ASIP was
handled in [1], [2], [3], [4]: An evolution programming
approach for area-efficient design was presented in [1], [2],

and the grouping problem that n control-data flow graphs
are bundled into m (< n) groups was considered to
synthesize area-efficient multifunction accelerators [3], [4].
These are focused on the design of hardware blocks, but do
not consider the relation between the synthesized hardware
and the corresponding instruction. Second, the matching of
a code sequence into a predefined instruction set was
handled in [5], [6], [7], [8], [9]. A tree-based approach
employing dynamic programming techniques was pro-
posed in [5]. In [6], [7], the instruction selection and the
register allocation were merged into a single tree covering
phase and an optimal scheduling algorithm was proposed
to minimize the number of memory spills. Integer linear
programming (ILP) based approaches considering instruc-
tion-level parallelism were proposed in [8], [9]. However,
these approaches did not take into account the generation of
new instructions optimal for a given application. Third,
how to select instructions and implement them was
handled in [10], [11]. Instructions are selected from a fixed
super-set of all the possible instructions based on the
intermediate language of GNU compiler. Hence, it cannot
generate new instructions for a specific application, but can
select them from the predefined super-set. Last, the
instruction generation problem was treated in [12] by
formulating the problem as a modified scheduling problem
of micro-operations (MOPs). In the approach, each MOP is
represented as a node to be scheduled and a simulated
annealing scheme was applied for solving the scheduling
problem. This work is important in that it tried to generate
application specific complex instructions. Complex instruc-
tions are more powerful than simple instructions because
complex instructions can use the full power of execution
engines supported in the processor, resulting in higher
performance by exploiting more parallelism in MOPs.
However, in general purpose DSP processors, complex
instructions have not been widely used because their

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999 603

. The authors are with the Department of Electrical Engineering, Korea
Advanced Institute of Science and Technology, Taejon, Korea.
E-mail: {hchoi, jskim, grumpy}@snoopy.kaist.ac.kr.
{icpark, shwang, kyung}@ee.kaist.ac.kr.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109702.

0018-9340/99/$10.00 ß 1999 IEEE

complex instructions are too general to be used efficiently
and powerfully for a specific application. In contrast,
complex instructions of an ASIP can be efficient if the
complex instructions are tuned to the application which the
ASIP aims at.

Although application specific complex instructions are
usually executed in multiple cycles, only single-cycle
complex instructions are considered in [12]. The multicycle
instruction, however, has two noticeable advantages over
the single-cycle instruction. First, it can reduce the program
memory size, which might be crucial in embedded systems.
Second, it can reduce the number of required code fetches,
thus speeding up the execution, especially if the code is
stored in external memory that is much slower than the
ASIP. In addition, the fewer memory accesses lead to a
reduction in power consumption [13] since fetching codes
from external memory consumes large power.

In this paper, we propose a new approach based on the
subset-sum problem [14] to generate an optimal instruction
set including multicycle complex instructions as well as
single-cycle complex instructions. The proposed method
can also be applied to match a code sequence to the
predefined instructions.

The rest of this paper is organized as follows. In Section 2,
we give some background on the target architecture of the
ASIP to be synthesized and an overview of our ASIP
synthesis system. In Section 3, we describe the new
approach to generate complex instructions. We also deal
with how to apply the proposed method to large-sized
problems. Section 4 shows how the proposed approach can
be used to match a code sequence to the predefined
instructions. Experimental results are shown in Section 5.

2 BACKGROUND

In this section, we briefly address the target micro-
architecture of the ASIP to be synthesized and the overview
of our ASIP synthesis system called Partita.

The target architecture is a pipelined DSP processor
controlled by the �-program. Like most DSP processors, it
has a separate address generation unit (AGU) and can
access two data-memories (XDM and YDM) to fetch two
memory-operands simultaneously. The �-control word in
the �-ROM is composed of four fields: two fields for two
simultaneous data-memory accesses, one field for arith-
metic, multiply, and shift operations, and one field for
register data transfer operations. Hence, an arithmetic
operation (or a multiply operation or a shift operation)
and a register move operation can be executed in parallel.
Each operation in a field of the �-control word is called a
MOP (micro-operation).

The ASIP supports three classes of instructions: P, C, and
S classes. First, P-class contains instructions that are not
only primitive, but also essential in all applications, i.e.,
simple arithmetic instructions and control instructions such
as branch and call. P-class instructions are always sup-
ported in all the generated ASIPs and executed in the
execution kernel. Actually, we support 38 P-instructions: 23
for computing operations (e.g., ALU and MPY), 11 for
control operations (e.g., branch), and 4 for special opera-
tions. Second, C-class is composed of the instructions that

are more complex than P-class instructions. Though it is
also executed in the same execution kernel, it is more
powerful than the P-class due to two reasons. First, a C-
instruction can control all the units in the kernel at the same
time, while a P-instruction can use a limited number of
units because of the instruction encoding constraint. For
example, a 16-bit instruction format of the P-instruction is
not sufficient for specifying the functions of all the units in
the kernel. In contrast, the C-instruction is transformed into
a sequence of wide �-control words that can control all the
units simultaneously. In other words, the C-instruction can
fully use the parallelism supported in the kernel. Second, C-
instructions help reduce the code-memory size and the
number of code-fetches because a C-instruction is compar-
able to several P-instructions. It is very important in the
embedded systems (the main target of the ASIP) that
usually have a small internal code-memory. Therefore,
generating an appropriate C-instruction set is a very
important task for the synthesis of the ASIP. Last, S-class
is composed of instructions that are supported by special
hardware units called S-HWs.

Now, we briefly address our ASIP synthesis system,
Partita, shown in Fig. 1. The inputs to Partita are the
application program written in C, typical input data for the
application, and the constraints, such as maximum execu-
tion time allowed. The input application is transformed into
a MOP list while preserving almost all the concurrency in
the source program. We sample-run the MOP list with the
given typical input data to obtain the profile of the running
frequency of each MOP. However, in the case that the
timing requirement is hard (real-time system) and there is a
loop whose loop-count depends on the input data, we
cannot use sample-run with typical input data. Instead, we
use a static timing analysis technique [16] based on abstract
simulation that guarantees the maximum execution time.
We first match the MOP list to the P-instructions to estimate
the execution time when only the P-instructions are used. If
it meets the performance constraint, we actually match the
MOP list to the P-instructions. However, if not satisfactory,
we start to generate C-instructions from the MOP list. If the
generated C-instructions make the code sequence meet the
timing constraint, we map the rest of the MOP list, not
covered by the generated C-instructions, to the P-instruc-
tions. However, if the generated C-instructions are still not
sufficient, we try to generate S-instructions. If the generated
S-instructions fail to meet the timing constraint, we
conclude that synthesizing an ASIP that meets the timing
constraint is impossible. Otherwise, the rest of the MOP list
is mapped to the P-instructions and C-instructions. This
instruction generation phase is performed for all the paths
in the application program, i.e., we check the timing
constraints for all the paths.

After generating instructions that meet the given timing
constraint, we generate hardware modules required to
execute the instructions. If S-instructions are needed, the
corresponding S-HWs are synthesized. Other necessary
hardware modules, such as the decoding unit and the fetch
unit, are also synthesized with consideration of the newly
generated C-instructions and S-instructions. All newly
generated instructions are encoded in the instruction space,

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

and the �-ROM is optimized including the �-codes for the
C-instructions generated. In this paper, we mainly focus on
the C-instruction generation block shown in the middle of
Fig. 1.

3 GENERATION OF C-CLASS INSTRUCTIONS

We first describe the generation of single-cycle C-instruc-
tions (SCC-instructions) and then extend it for multicycle C-
instructions (MCC-instructions). The C-instruction genera-
tion problem is solved by transforming it into a subset-sum
problem. Notice that this kind of separation between SCC-
instructions and MCC-instructions is just for the
convenience of explanation. We actually generate both of
them simultaneously in a single framework.

3.1 Generation of Single-Cycle C-instruction

This subsection explains how SCC-instructions are gener-
ated from a MOP list. The difference between the estimated
execution time using only the P-instructions (Tp) and the
given constraint on the maximum execution time (Tc) is
represented as Td (i.e., Td � Tp ÿ Tc). For an SCC-instruc-
tion, SCi, generated by merging several MOPs, there is
generally a speed gain gi. The problem of generating SCC-
instructions can be formally stated as follows:

Problem 1. Given a MOP list, generate an SCC-instruction set
such that 1) the total gain should be no less than Td, 2) the
generated instructions should be used as many times as
possible in the application, and 3) the number of SCC-
instructions generated should be as small as possible.

The rationale behind the requirements is to generate a
small set of SCC-instructions which can be frequently used

in the application. This prevents a code sequence whose
pattern is rarely used in the application from being
generated as an SCC-instruction. Such a rarely used code
sequence can become an SCC-instruction if and only if it is
indispensable for meeting the timing constraint. The
number of C-instructions should be as small as possible
since each C-instruction requires additional space in the �-
ROM and makes the instruction decoder complex.

We can solve this problem optimally by formulating it as
the subset-sum problem [14].

Subset-sum problem. Given S and t, where S is a set
fx1; x2; . . . ; xng of positive integers and t is a positive integer,
find a subset of S whose sum is as large as possible but not
larger than t.

For the sake of formulation, we need to define some
terms. A MOP in the given MOP list, denoted as mi, may
or may not have dependencies on other mjs. A
compatible MOP group, Ck, is the set of mis that can
be performed in the same cycle and specified in a single
�-control word, i.e., mis that have no dependencies one
another and can be packed together in a single �-control
word. This means that a compatible MOP group is a
candidate SCC-instruction. As an example, given a MOP
list fm1;m2;m3;m4;m5;m6;m7;m8g, assume that m1, m2,
and m3 can be performed in a single-cycle, and the same is
true form6 andm7. The possible five Cks are shown in Fig. 2.
Note that we take account of all the possible Cks for m1, m2,
and m3 (i.e., not only C4 but also C1-C3).

Since an mi may be included in more than one Ck, there
is a constraint in selecting Cks such that the selected Cks
have no common mis. For example, we have to select only
one among C1-C4. The compatible MOP group selection

CHOI ET AL.: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTIONS FOR EMBEDDED DSP SOFTWARE 605

Fig. 1. Partita system overview.

constraint (CGSC) can be represented by a conflict graph
where each node represents a Ck and an edge between two
nodes represents that they have at least one common MOP,
hence, only one of them can be selected as a solution. The
conflict graph for Fig. 2 is shown in Fig. 3.

Each Ck is associated with a gain gk that is the speed gain
achievable by the introduction of the corresponding SCC-
instruction. Now, Problem 1 can be restated as follows:

Problem 2. Given a MOP list, select Cks satisfying the CGSC,
such that the following three requirements are met: 1) the sum
of gks of selected Cks should be no less than Td, 2) the generated
instructions should be used as many times as possible in the
application, and 3) the number of different SCC-instructions
corresponding to the selected Cks should be as small as
possible.

The third requirement cannot be replaced by ªthe number
of selected Cks should be as small as possible.º The number of
selected Cks is not always equal to that of SCC-instructions
to be generated because a number of Cks can be
implemented by one C-instruction. For example, given a
MOP list fm1;m2;m3;m4;m5;m6;m7;m8g, assume that Td is
3 and the possible Cks are C1 � fm1;m2g, C2 � fm1;m3g,
C3 � fm2;m3g, C4 � fm1;m2;m3g, C5 � fm4;m5g, a n d
C6 � fm7;m8g. The associated gks are computed as 1, 1, 1,
2, 1, and 1, respectively. Let us assume that C2, C5, and C6

can be supported by one C-instruction. (Henceforth, such
Cks are called c-isomorphic. The exact meaning of and how to
decide the c-isomorphism will be described later.) If we try
to minimize the number of selected Cks, the solution is to
select C4 and C5. In this case, the number of SCC-
instructions is equal to that of the selected Cks. However,
if we select C2, C5, and C6, the number of SCC-instructions

is one (not three because they are mapped into the same C-
instruction), while the number of the selected Cks is three.

This is illustrated in Fig. 4.
Now, consider the second requirement. We may try to

meet the second requirement (i.e., try to find frequently

used C-instructions) by representing all the Cks that are c-
isomorphic as a new single ~Ck whose gain is set to the sum
of all the gains of the Cks and then selecting ~Cks based on

the gain. It is based on the assumption that if the single ~Ck is
selected, all the c-isomorphic Cks are selected and imple-

mented by one C-instruction. Though the scheme may be a
good method to meet the second requirement, it does not
allow the case in which only part of the c-isomorphic Cks

are selected and the others are not selected.
As an illustration, consider the above example again. Let

us assume that c-isomorphic C2, C5, and C6 are represented

as ~C2. Then, the gain of C1, ~C2, C3, and C4 are 1, 3, 1, and 2,
respectively (notice that ~C2's gain is the sum of the gains of
C2, C5, and C6). If we use the above scheme, ~C2 having the

largest gain is selected, and the c-isomorphic Cks (i.e., C2,
C5, and C6) are automatically selected. Therefore, in that
scheme, the total gain is limited to 3 (note that only one

among C1-C4 can be selected). If the given Td were 4, we
could not find a solution. However, the solution for Td � 4

can be obtained by selecting C4, C5, and C6 (two C-
instructions with gain 4). As shown in Fig. 5, only two
among the three c-isomorphic Cks are selected in the

solution. This example claims that we should take account
of the possibility that not all the c-isomorphic Cks are
mapped into a C-instruction; some of them may be 1)

included in more larger C-instructions, 2) divided for
different C-instructions, 3) mapped into P-instructions later,

etc.
We now present the way to solve Problem 2 using a

modified subset-sum problem. Problem 2 can be reformu-
lated as follows:

Problem 3. Given S and Td, where S is a set of gain gk
corresponding to Ck, fg1; g2; . . . ; gng, find a subset of S whose

sum is no less than Td with satisfying following two

requirements: 1) the generated instructions should be used as

many times as possible in the application, and 2) the number of

SCC-instructions should be as small as possible.

We can see that Problem 3 is an extension of the subset-
sum problem. Therefore, Problem 3 can be solved by an

extended subset-sum problem solver [14]. Fig. 6 shows the

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

Fig. 2. Possible Cks.

Fig. 3. Conflict graph for Fig. 2.

Fig. 4. Example for the third requirement.

pseudocode of the proposed SCC-instruction generation
algorithm using the subset-sum problem.

For a given MOP list, a dependency graph (Gd) among
MOPs is first built. The data dependency, output depen-
dency, and data anti-dependency among MOPs are checked
and represented in the Gd. Each node in the graph
represents a MOP and each edge represents the depen-
dency between two nodes. Based on Gd, all the possible Cks
are generated and their gains are computed. Be aware that
we do not consider the c-isomorphic Cks in this gain
computation phase. They are considered in the subset-sum
problem solver. Then, a conflict graph (Gc) to represent the
CGSC is built. A subset-sum problem solver extended for
the generation of SCC-instructions is employed to find an
optimal solution for the given Cks, S, and Gc. Then, the
MOP list is modified based on the SCC-instructions found
by the subset-sum problem solver.

The details of the extended subset-sum problem solver is
as follows. Li is a list of possible solution candidates. Each
element of Li (i.e., each solution candidate) is in the form of
(TG, XG, CS, ISS) which represents the total gain, extra gain,
the list of selected Cks, and the size of corresponding C-
instruction set (with considering c-isomorphic Cks), respec-
tively. Operation Liÿ1 � i denotes a new list derived from
Liÿ1; for each element in the Liÿ1, the gain of Ci (i.e., gi) is
added to the TG, 1 is added to XG if CS already contains
some Cjs that are c-isomorphic with Ci, Ci is added to CS,
and ISS is updated to the number of different C-instructions
in CS. Before deriving the new list by � operation, the CGSC
is checked between the CS of every element in Liÿ1 and the
Ci to be added. In Step 5, elements that have almost no
possibility to become a solution are eliminated from the list.
The details of this pruning is addressed in Section 3.3. In
Steps 6-8, the best element of Li that is most frequently used
in the code with satisfying the minimum C-instruction-set
size is searched among the elements that meet Td. Notice
that XG, extra gain, gives a favor to the C-instructions
which are used frequently in the code. The (TG', XG', CS',
ISS') keeps the best solution found.

As an illustration of the proposed algorithm, the step-by-
step change of Li is shown in Fig. 7 for the example in Fig. 4;
among six Cks with gains 1, 1, 1, 2, 1, and 1, respectively, C2,
C5, and C6 are c-isomorphic. We can see in L6 that
�3; 2; �C2; C5; C6�; 1� is found as the solution for Td � 3 and
�4; 1; �C4; C5; C6�; 2� for Td � 4, which are the optimal
solutions as explained before. Therefore, one SCC-instruc-
tion is generated for Td � 3 and two SCC-instructions (one
for C4 and the other for C5 and C6) for Td � 4.

3.2 Generation of Multicycle C-Instruction

We extend the proposed method for the generation of

MCC-instructions. The problem of generating MCC-

instruction is almost the same as that of SCC-instruction
generation.

Problem 4. Given an MOP list, generate an MCC-instruction-

set satisfying the following three requirements: 1) the total

gain should be no less than Td, 2) the generated MCC-

instructions should be used as many times as possible in the

application, and 3) the number of generated MCC-instructions

should be as small as possible.

A major difference between the SCC-instruction genera-

tion and the MCC-instruction generation is in the genera-

tion of Cks. Only the mis that can be executed together in a

cycle are considered in the SCC-instruction generation.
However, in the MCC-instruction generation, a Ck can

include mis that can be executed in sequel as well as in

parallel. This enlarges the solution space and, as a result,

more powerful instructions can be found. However, the

enlarged solution space causes the explosion of possible Cks
for a large-sized code. To overcome the situation, we use the

following three techniques.

1. We limit the maximum length of Ck to a certain
value based on the following rationale. A long Ck
(i.e., Ck includes a large number of MOPs) has little
chance to be selected as an MCC-instruction because
the extra gain (XG) and C-instruction set size (ISS)
favor MCC-instructions applicable multiple times in
the code. Thus, we can prune such a long Ck from
the solution space at the expense of little degradation
of solution quality.

2. Not all the sequences of MOPs become the Cks. The
MOPs in a Ck should have some relations, such as
data-dependency, among them. The rationale be-
hind this is that unrelated MOPs have no reason to
be packed into an instruction.

CHOI ET AL.: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTIONS FOR EMBEDDED DSP SOFTWARE 607

Fig. 5. Example for the second requirement.

Fig. 6. SCC-instruction generation algorithm.

3. A Ck whose weighted gain (i.e., gain multiplied by
its occurrence frequency) is much less than that of
other Cks can be eliminated from the Ck list because
such a Ck has little chance to be selected as a C-
instruction, but increases the complexity.

These techniques are very effective in reducing the

number of Cks to be considered and, thus, lead to reducing

the computation time. If we fail to find a solution under the

length limit n, we increase the limit and then retry to find a

solution. Since the solution space to be searched increases as

the limit increases, the chance of finding a solution increases

also. However, we cannot increase the limit beyond some

bound because it may significantly degrade programmabi-

lity. If the bound is reached, we have to generate S-class

instructions which are assisted by special hardwares.

3.3 Pruning Search Space

The pruning of Fig. 6 is very important in reducing the

computation time of the algorithm and making the

algorithm handle practical-sized problems. Here are the

pruning techniques:

1. The element whose C-instruction size, ISS, is larger
than the instruction space allocated for C-instruc-
tions is eliminated.

2. The element whose total gain, TG, has no possibility
to meet Td is eliminated. This is checked by
computing the maximal gain obtainable from the
remaining Cks. In the computation, we consider the
CGSC by taking account of MWIS (Maximal
Weighted Independent Set) in the remainders.

3. We stop the algorithm as soon as we find a solution
meeting the given constraints without further
searching all the remaining solution space. This is
the most effective way to reduce the computation
time of the proposed algorithm. However, not to
degrade solution quality much, our algorithm has to
be changed to the BFS (Best First Search) style. This
is achieved by sorting the Cks in descending order of
their weighted gain before calling the subset-sum

problem solver. If we assume that a solution is found
after processing Ci, what we can get at best by
processing Cjs sorted after Ci is a solution that has a
larger gain but the same number of C-instructions.
Since the larger gain has no meaning in our objective
once the required gain is met, we can stop the
searching as soon as we find a solution.

4. The element whose total gain is much less than those
of other elements is eliminated. This is also possible
due to the sorted Cks. Such an element has little
chance to beat other elements and become a solution
because the remaining Cks have less weighted gains
and may increase the C-instruction set size.

The overall complexity of the algorithm without pruning
is O�2n�, where n is the number of Cks. The complexity of
each of the pruning technique is as follows: The first, the
third, and the fourth pruning techniques are performed
simultaneously by just scanning each element of Li for each
i. Thus, the complexity of them is O�jLij�. For the second
technique, we have to compute the MWIS of each element
of Li, hence the complexity is O�jLij � �n� e��. Here, n is the
number of Cks and e is the number of edges in the Ck
conflict graph (Gc). So, the total complexity of pruning
techniques is O�jLij � �n� e� 1�� � O�jLij � �n� e��.

Now, we think about the effect of pruning. Assume that,
on the average, the first, the second, and the fourth
techniques prune away �1ÿ p� portion of Li �0 � p � 1�,
i.e., p is the average portion of Li that is not pruned away.
And, m is the number of Cks processed until we find a
solution. Then, since we stop the algorithm as soon as we
find a solution (the third pruning technique), overall
complexity of the algorithm with pruning becomes
O�2mp�n� e��. Though it depends on the characteristics of
the application program and Td, m is generally much less
than n, thus the pruning can reduce much of the
computation time in many cases.

3.4 C-Isomorphism in Generating C-instructions

In this part, we present the definition of and the way to
consider the c-isomorphism in generating C-instructions.

608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

Fig. 7. Applying the proposed algorithm to an example.

Given a MOP list, Cks are said to be identical if they have the
same operation sequence and the same operands. Clearly,
identical Cks can be implemented by a C-instruction. Since
identical Cks rarely exist in real codes, we use c-isomorphic
Cks instead of the identical Cks in generating C-instructions.

Two isomorphic Cks are said to be c-isomorphic if a single
C-instruction can specify both of them by encoding some
information in the instruction format. Because of the limit
on the operand encodings allowed in the instruction format,
not all the isomorphic Cks can be c-isomorphic. As an
illustration, consider Fig. 8 showing four Cks.

We can see that C1 and C2 are identical, hence they
can be implemented by a C-instruction. For C1 and C3,
we can see that they are not identical but isomorphic in
topological point of view; R1 in C1 is replaced by R5 in
C3. To map C1 and C3 into a C-instruction, we have to
provide some information to the instruction regarding
which register should be used for the first operand. If
such an encoding is allowed in the instruction format, C1

and C3 can be mapped into a C-instruction, but if not,
we cannot merge them. Similarly, in order to unite C1

and C4 as a single C-instruction, we need to encode two
operands; one for R1 in C1 and R5 in C4, and the other
for R2 in C1 and R6 in C4.

This c-isomorphism is considered when we compute XG
in the subset-sum solver, i.e., in step 4 of Fig. 6. We first
check whether CS already contains any Cj that is
isomorphic with Ci to be added. If such Cjs exist, we
compute the required encoding information to make Ci and
Cjs c-isomorphic, and check whether the encoding obeys
the encoding constraints. If it is true, XG is increased by one.

Here, we need to address the use of temporary registers
to reduce the required encoding information. Let us assume
that the ASIP has three temporary registers accessible in the
�-codes. We can use these temporary registers to reduce the
required encoding information by replacing the general
registers of Cks with them. As an illustration, assume that
R1 in C1 and R5 in C3 of Fig. 8 are not used any more after
the MOV instruction, i.e., they are not live variables after
the MOV instruction. By replacing them with a temporary
register, C1 and C3 become identical with no encoding
information at all. We analyze the variable's life time to find
such registers.

The encoding constraint has a significant effect on the
resulting code. If we increase the number of registers to be
encoded in the instruction format, we can find C-instruc-
tions used more frequently in the code. However, due to the
additional encoding information, the size of the instruction
format (i.e., the number of bits) required for the C-
instruction increases. The size of �-ROM may decrease
because of the C-instructions that cover many c-isomorphic

Cks. On the contrary, if we decrease the allowed encodings,
the size of the instruction format decreases and the size of �-
ROM may increase.

3.5 Instruction Generation Considering Other Basic
Blocks

Hitherto, we have addressed how to generate C-instructions
for a basic block (a sequence of consecutive codes in which
flow of control enters at the beginning and leaves at the end
without halt or possibility of branching except the end). In
this part, we present a way to consider other basic blocks
simultaneously in the generation of C-instructions. It is very
important in that it can enable us to find C-instructions
more frequently applicable in a global point of view. Notice
that we assume the basic blocks are on a path of the
application program and the required gain, Td, for the path
is given. The details of computing the gain and the way to
generate C-instructions for multipaths are addressed in the
next section.

The method is as follows: We scan all the basic blocks to
generate the possible Cks and the corresponding conflict
graphs. Since Cks in different basic blocks have no common
MOPs, no additional edges are necessary between the
conflict graphs of different basic blocks. We run the subset-
sum problem solver with the gathered Cks. The subset-sum
problem solver then finds the optimal C-instruction set for
all the basic blocks, not for a single basic block.

However, for a long path, the method may become
inefficient because of the large number of Cks. In this case,
we first group the basic blocks and then apply the above
method to each group separately. To minimize the possible
degradation of solution quality caused by the grouping, we
have to make the basic blocks in the same group have
isomorphic Cks as many as possible, and those in different
groups as few as possible. After generating C-instructions
for a group, the generated C-instructions are used to guide
the generation of C-instructions for other groups. In other
words, Cks that are c-isomorphic with the already generated
C-instructions have more possibility to be selected in the
solution.

The grouping is performed as follows: First, the con-
nectivity between two basic blocks are computed, which
represents the number of isomorphic Cks increased if those
two basic blocks are included in the same group. Second,
we build a graph where a vertex is a basic block and an
edge represents the connectivity between two basic blocks.
We divide the graph by using the min-cut partitioning
algorithm [17] until the number of Cks in each partition falls
into a size that can be handled efficiently.

Now, we address how to distribute the required gain, Td,
to each group in a path. We sort theCks gathered from all the
basic blocks in descending order of their weighted gains.
Starting from the firstCk in the list, we compute the expected
gain of each basic block when theCk becomes a C-instruction.
In this step, we consider the possibility that some C-
instructions cannot be applied simultaneously in a block if
they have common MOPs. This process is performed until
the total expected gain is no less than Td. We compute the
expected gain of each group by summing up those of the
basic blocks contained in the group. Td is distributed to each
group in proportion to the expected gain of the group.

CHOI ET AL.: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTIONS FOR EMBEDDED DSP SOFTWARE 609

Fig. 8. Example for c-isomorphism.

3.6 Instruction Generation Considering Multipaths

In the previous sections, we focused on generating C-

instructions in one path. Since given application programs

usually have more than one execution path, we describe in

this section the details of computing the required gain for

each path and the way to generate C-instructions for

multipaths.
In real-time DSP applications, the time constraint to be

met is hard. Stated in another way, all the execution paths

should meet the given timing constraint. We first match the

MOP list to the P-instructions and check whether the

execution time of every possible execution path meets the

given constraint. If it meets the constraint, the required gain

for the path is zero. However, if not, the difference between

the execution time and the timing constraint becomes the

required gain for the path. As an illustration, consider the

case shown in Fig. 9 where five basic blocks make four

execution paths, P1-P4. The execution time for each path

when mapped to P-instructions is also shown in the figure.

Given that the timing constraint is 9, P1 and P3 cannot meet

610 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

Fig. 9. Multipath case.

TABLE 1
C-Instructions for the Code Size Reduction

the timing constraint, and the required gains for P1 and P3

are 1 and 2, respectively.
After computing the required gains for all the paths, we

compute the gain required for each basic block in a path as

explained in Section 3.5. For a basic block belonging to more

than one path, several different gains may be required

according to the paths. In that case, the largest one is chosen

as the gain required for the basic block. Assume that the

required gains for B3 are 1 and 2 for P1 and P3, respectively.

Then, 2 is chosen as the required gain for B3.
Based on the computed gain for each basic block, C-

instructions are generated by considering one path after

another path. In this phase, we give priority to the path

that requires large gain. After generating C-instructions

for a path, the C-instructions are used to guide the

generation of C-instructions for other ones to reduce the

possible degradation due to the path-by-path C-instruc-

tion generation.

4 MATCHING TO P-CLASS INSTRUCTIONS

This section describes how the matching of a MOP list to the
P-instructions is performed in the proposed framework. A
P-instruction is a predefined one-cycle instruction that can
perform a limited set of MOPs in a cycle. Compared to the
SCC-instruction, the difference is that the possible set of
MOPs that can be performed in parallel is limited for P-
instructions: A predefined, limited set is allowed due to the
instruction encoding constraint. So, we can regard the P-
instruction as a special subset of the SCC-instruction. Thus,
if we allow the Cks to include only MOPs that can be
executed in parallel in a single P-instruction, we can use the
algorithm described in Fig. 6 for the P-instruction matching.

5 EXPERIMENTAL RESULTS

The proposed method has been implemented in C language
on a SPARC-20 workstation with 128 Mbyte main memory.
We tested the proposed method on the DSPStone bench-
marks [15] and some well-known DSP applications. For

CHOI ET AL.: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTIONS FOR EMBEDDED DSP SOFTWARE 611

TABLE 2
C-Instructions for the Execution Time Reduction

each benchmark program, we first mapped it into P-
instructions. Then, we employed the proposed C-instruc-
tion generation algorithm to reduce the code size and the
execution time. For all the experiments, the maximum
number of encodings and the maximum length of the C-
instruction are set to 6 and 5, respectively.

5.1 Code Size Reduction

Table 1 shows the statistics of C-instructions generated for
the reduction of code size. The P-size shows the code size
(i.e., the number of instructions) of the P-instruction code.
The required gain is shown in Td; for each benchmark, we
tried three gainsÐ10 percent, 20 percent, and 30 percent
reduction of code size. SCC shows the results obtained by
generating only SCC-instructions, i.e., turning off the ability
to generate MCC-instructions. G represents the gain (code
size reduction) and C represents the number of generated
SCC-instructions. The columns under SCC+MCC show the
results obtained by generating MCC-instructions, as well as
SCC-instructions. O shows how often the generated C-
instructions are used in the code. The following four
columns, 2-5, show the number of 2-cycle C-instructions,
3-cycle C-instructions, etc., that were generated. The last
column, Time, shows the CPU time in seconds taken for the
generation of the C-instructions (� means that the basic
block grouping explained in section 3.5 was used for that
case).

In many cases, we could not meet Td by generating only
SCC-instructions. We could meet Td for all the cases by
generating MCC-instructions. Note that though we allowed
SCC-instructions to be generated, as well as MCC-instruc-
tions, SCC-instructions were not generated at all under
SCC+MCC; only the MCC-instructions were generated. We
can also see that the number of C-instructions under
SCC+MCC is much smaller than that under SCC. These
clearly show the importance of MCC-instructions. The
number of MCC-instructions and that of their occurrences
indicate that the proposed method generates the valuable
MCC-instructions which are used frequently in the code; for
example, a C-instruction that is used 19 times was found for
the benchmark adpcm. The CPU time is no more than three
minutes, which is reasonable for the optimization of
embedded software.

5.2 Execution Time Reduction

Table 2 shows the statistics of generated C-instructions for

the reduction of execution time. The P-cycle shows the

execution time (in cycles) of the P-instruction code obtained

by the profiler. The required gain is set to 10 percent, 20

percent, and 30 percent reduction of the execution cycle.

The column O shows how often the generated C-instruc-

tions are executed.
We could meet Td for all the cases by generating MCC-

instructions. In contrast, we could not meet Td under SCC

in many cases, and the number of C-instructions generated

under SCC was larger than that under SCC+MCC. In

addition, we can see that the proposed method generates C-

instructions, which are executed frequently in the code with

reasonable CPU time. We found a C-instruction that is

executed 561 times for the benchmark adpcm.

5.3 Maximum Gain under Various Number
of C-Instructions

Table 3 shows the maximum gain obtainable by limiting the

number of C-instructions allowed. Gain in code size and

Gain in execution cycle show the maximum gain in code

size and execution cycle, respectively, that we can achieve

under the given number of C-instructions. We can see that

large gain (especially in execution cycle) is obtained by

generating only a few C-instructions. This clearly shows

that we can achieve large gain by merely generating proper

612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

TABLE 3
Maximum Gains under Various Constraints on the Number of C-Instructions

Fig. 10. Some of the C-instructions generated.

C-instructions without using additional special hardware
accelerator.

5.4 C-Instructions Generated

Some examples of the C-instructions generated in the above
experiments are shown in Fig. 10. Figs. 10a, b, and c are C-
instructions commonly used at the beginning of functions
(subroutines). Notice that the execution cycle of Fig. 10c is
two, not three, because MOV and LDI can be executed in
one cycle. The codes in Figs. 10d and e are frequently used
at the end of loops (e.g., for, while, etc.). Figs. 10f and g are
the C-instructions that are equal to the shift by immediate
value and the push immediate value, which are commonly
used but are not supported in the P-instruction set. Fig. 10h
is equal to enc3 += enc2/2^enc1 which is actively used in the
adpcm benchmark. Notice that these C-instructions are
MCC-instructions each of which is comparable to two or
three P-instructions. This shows the importance of the
generation of MCC-instructions.

6 Conclusions

In this paper, we presented a new approach to generate
application specific instructions from the given DSP
applications. We transformed the instruction generation
problem to the extended subset-sum problem, and used the
subset-sum problem solver to synthesize application spe-
cific complex instructions. Along with many things to be
considered, such as c-isomorphism and encoding con-
straints, we showed the way to apply the proposed
framework for the generation of single-cycle C-instructions
and multicycle C-instructions. In addition, we described
how to apply the proposed method to the practical
problems that are large-sized and have multipaths. The
experimental results indicate that the proposed approach is
effective in reducing the code size, as well as increasing the
performance. For numerous benchmarks including DSP
applications, the proposed method can find multicycle C-
instructions that are enough to meet the required timing
constraints.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their invaluable comments. This work was performed as
a part of the ASIC Development Project supported by the
Ministry of Trade, Industry, & Energy, Ministry of
Information and Communication, and Ministry of Science
and Technology of Korea.

REFERENCES

[1] W. Zhao and C.A. Papachristou, ªAn Evolution Programming
Approach on Multiple Behaviors for the Design of Application
Specific Programmable Processors,º Proc. European Design & Test
Conference, pp. 144-150, 1996.

[2] W. Zhao and C.A. Papachristou, ªSynthesis of Reusable DSP
Cores Based on Multiple Behaviors,º Proc. Int'l Conf. Computer-
Aided Design, pp. 103-108, 1996.

[3] K. Kim, R. Karri, and M. Potkonjak, ªSynthesis of Application
Specific Programmable Processors,º Proc. 34th Design Automation
Conf., pp. 353-358, 1997.

[4] J.H. Yi, H. Choi, I.C. Park, S.H. Hwang, and C.M. Kyung,
ªMultiple Behavior Module Synthesis Based on Selective Group-
ings,º Proc. Design, Automation, and Test in Europe, pp. 384-388,
1998.

[5] C. Liem, T. May, and P. Paulin, ªInstruction-Set Matching and
Selection for DSP and ASIP Code Generation,º Proc. European
Design and Test Conf., pp. 31-37, 1994.

[6] G. Araujo and S. Malik, ªOptimal Code Generation for Embedded
Memory Non-Homogeneous Register Architectures,º Proc. Int'l
Symp. System Synthesis, pp. 36-41, 1995.

[7] G. Araujo, S. Malik, and M.T.-C. Lee, ªUsing Register-Transfer
Paths in Code Generation for Heterogeneous Memory-Register
Architectures,º Proc. 33rd Design Automation Conf., pp. 591-596,
1996.

[8] R. Leupers and P. Marwedel, ªInstruction Selection for Embedded
DSPs with Complex Instructions,º Proc. European Design Automa-
tion Conf., 1996.

[9] R. Leupers and P. Marwedel, ªTime-Constrained Code Compac-
tion for DSP's,º IEEE Trans. VLSI Systems, vol. 5, no. 1, pp. 112-122,
Mar. 1997.

[10] M. Imai, A. Alomary, J. Sato, and N. Hikichi, ªAn Integer
Programming Approach to Instruction Implementation Method
Selection Problem,º Proc. European Design Automation Conf., pp.
106-111, 1992.

[11] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi, ªAn
ASIP Instruction Set Optimization Algorithm with Functional
Module Sharing Constraint,º Proc. Int'l Conf. Computer-Aided
Design, pp. 526-532, 1993.

[12] I.J. Huang and A.M. Despain, ªSynthesis of Instruction Sets for
Pipelined Microprocessos,º Proc. 31st Design Automation Conf.,
pp. 5-11, 1994.

[13] M.T.-C. Lee, V. Tiwary, S. Malik, and M. Fujita, ªPower Analysis
and Minimization Techniques for Embedded DSP Software,º IEEE
Trans. VLSI Systems, vol. 5, no. 1, pp. 123-135, Mar. 1997.

[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, chapter 37, pp. 978-983. The MIT Press, McGraw-Hill
Book Company, 1992.

[15] V. Zivojnovic, ªDSPStone: A DSP-Oriented Benchmarking Meth-
odology,º Proc. Int'l Conf. Signal Processing Applications &
Technology, pp. 715-722, 1994.

[16] S. Malik, M. Martonosi, and Y.-T.S. Li, ªStatic Timing Analysis of
Embedded Software,º Proc. 34th Design Automation Conf., pp. 147-
152, 1997.

[17] C.M. Fiduccia and R.M. Mattheyses, ªA Linear-Time Heuristic for
Improving Network Partitions,º Proc. 19th Design Automation
Conf., pp. 175-181, 1982.

Hoon Choi received the BS degree in electrical
engineering from Yonsei University, Seoul,
Korea, and the MS degree in electrical engineer-
ing from the Korea Advanced Institute of
Science and Technology (KAIST), Taejon, Kor-
ea, in 1993 and 1995, respectively. He is
currently pursuing the PhD degree in electrical
engineering from KAIST. His research interests
include hardware/software co-design, timing
analysis, and power optimization. He is a

student member of the IEEE.

Jong-Sun Kim received the BS degree and MS
degree in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Korea, in 1995 and 1997, respectively.
He is currently a PhD candidate in the same
department at KAIST. His current research topic
is hardware/software co-design with emphasis
on the generation and synthesis of interface.

CHOI ET AL.: SYNTHESIS OF APPLICATION SPECIFIC INSTRUCTIONS FOR EMBEDDED DSP SOFTWARE 613

Chi-Won Yoon received the BS degree in
electrical engineering from KAIST, Taejon, in
1997. Currently, he is working toward the MS
degree in electrical engineering at KAIST. His
research interests includes the code generation,
hardware/software co-design, and system per-
formance analysis. He is a student member of
the IEEE.

In-Cheol Park received the BS degree in
electrical engineering from Seoul National Uni-
versity in 1986, the MS and PhD degrees in
electrical engineering from KAIST in 1988 and
1992, respectively. From May 1995 to May
1996, he worked at the IBM T.J. Watson
Research Center, Yorktown Heights, New York,
as a postdoctoral member of the technical staff
in the area of circuit design. He joined KAIST in
June 1996 as an assistant professor in the

Department of Electrical Engineering. His current research interests
include CAD algorithms for high-level synthesis and VLSI architectures
for general-purpose microprocessors. He is a member of the IEEE.

Seung Ho Hwang received the BS degree in
electronics engineering from Seoul National
University in 1979, the MS degree in electrical
engineering from KAIST in 1981, and the PhD
degree in electrical engineering and computer
science from the University of California, Berke-
ley. From May 1985 to May 1989, he worked at
the University of California, Berkeley as a
postgraduate researcher and at Schlumberger
Technologies, Inc., as a senior software engi-

neer from June 1989 to September, 1990. He joined KAIST in
September 1990 as an associate professor in the Department of
Electrical Engineering and, during his sabbatical year, he worked at
Silicon Image, Inc. His current research interests include CAD
algorithms for high-level synthesis, power estimation, hardware/software
co-design, and VLSI design. He is a member of the IEEE.

Chong-Min Kyung received the BS degree in
electronics engineering from Seoul National
University in 1975, the MS and PhD degrees in
electrical engineering from KAIST in 1977 and
1981, respectively. From April 1981 to January
1983, he worked at Bell Telephone Laboratories,
Murray Hill, New Jersey, as a postdoctoral
member of the technical staff in the area of
semiconductor device and processor modeling.
He joined KAIST in February 1983 as an

assistant professor in the Department of Electrical Engineering, where
he is now a professor. He was a visiting professor at the Institute fuÈr
Theoretische Electrotechnik und Mebetatechnik at the University of
Karlsruhe, Germany, from February 1989 to November 1989 as an
Alexander von Humboldt fellow, working on VLSI layout algorithms, and
as a visiting professor at the University of Tokyo from January 1985 to
February 1985. His current research interests include CAD algorithms
for all aspects of VLSI design, 3D computer graphics algorithms and
hardware acceleration for still image rendering and animation, VLSI
architectures for general-purpose microprocessors. He was the Asian
Representative for ICCAD (International Conference on Computer-
Aided Design) in 1993 and 1994. He is a member of the IEEE.

614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

